Exercise 20

For the following exercises, consider a rocket shot into the air that then returns to Earth. The height of the rocket in meters is given by $h(t)=600+78.4 t-4.9 t^{2}$, where t is measured in seconds.

Compute the average velocity of the rocket over the given time intervals.
a. $[9,9.01]$
b. $[8.99,9]$
c. $[9,9.001]$
d. $[8.999,9]$

Solution

The average velocity is calculated by

$$
v_{\mathrm{avg}}=\frac{h\left(t_{2}\right)-h\left(t_{1}\right)}{t_{2}-t_{1}} .
$$

Over the interval $[9,9.01]$ the average velocity is

$$
v_{\mathrm{avg}}=\frac{h(9.01)-h(9)}{9.01-9}=\frac{\left[600+78.4(9.01)-4.9(9.01)^{2}\right]-\left[600+78.4(9)-4.9(9)^{2}\right]}{9.01-9} \approx-9.849 .
$$

Over the interval [8.99, 9] the average velocity is

$$
v_{\mathrm{avg}}=\frac{h(9)-h(8.99)}{9-8.99}=\frac{\left[600+78.4(9)-4.9(9)^{2}\right]-\left[600+78.4(8.99)-4.9(8.99)^{2}\right]}{9-8.99} \approx-9.751 .
$$

Over the interval $[9,9.001]$ the average velocity is

$$
v_{\mathrm{avg}}=\frac{h(9.001)-h(9)}{9.001-9}=\frac{\left[600+78.4(9.001)-4.9(9.001)^{2}\right]-\left[600+78.4(9)-4.9(9)^{2}\right]}{9.001-9} \approx-9.8049 .
$$

Over the interval [8.999, 9] the average velocity is

$$
v_{\mathrm{avg}}=\frac{h(9)-h(8.999)}{9-8.999}=\frac{\left[600+78.4(9)-4.9(9)^{2}\right]-\left[600+78.4(8.999)-4.9(8.999)^{2}\right]}{9-8.999} \approx-9.7951 .
$$

